
Journal of Pharmaceutical and Biomedical Analysis 49 (2009) 619–626

Contents lists available at ScienceDirect

Journal of Pharmaceutical and Biomedical Analysis

journa l homepage: www.e lsev ier .com/ locate / jpba

Evaluation of chemometric algorithms in quantitative X-ray powder diffraction
(XRPD) of intact multi-component consolidated samples

Michael D. Moorea, Robert P. Cogdill b, Peter L.D. Wildfonga,∗

a Duquesne University, Mylan School of Pharmacy, Graduate School of Pharmaceutical Sciences, 600 Forbes Av., Pittsburgh, PA 15282, USA
b University of Nebraska, College of Engineering, 114k Othmer Hall, P.O. Box 880642, Lincoln, NE 68588-0642, USA

a r t i c l e i n f o

Article history:
Received 12 September 2008
Received in revised form 2 December 2008
Accepted 5 December 2008
Available online 13 December 2008

Keywords:
XRPD
Chemometrics
Compacts
Multi-variate analysis

a b s t r a c t

Quantitative X-ray powder diffraction (XRPD) data obtained from intact, consolidated samples affords
the opportunity to analyze mixtures that simulate pharmaceutical drug products without the need for
reversion back to powders; an analytical preparation step that destroys the contextual solid-state infor-
mation intrinsic to intact consolidated samples. Traditional, standardless quantitative methods generally
involve sophisticated pattern refinement procedures (e.g., Rietveld refinement) and are limited to crys-
talline materials. Methods that incorporate an internal standard are not optimal for compact analysis, and
may often be susceptible to prediction errors associated with intensity attenuation. Chemometric-based
XRPD utilizes full-pattern methods that combine analyses of both Bragg diffraction and diffuse scatter,
thereby allowing for enhancement of signal-to-noise, sensitivity, and selectivity. Classical least-squares
(CLS) regression, principal components regression (PCR) and partial least squares (PLS) regression are
three chemometric algorithms commonly employed in spectroscopy. In the present work, quantification
of a consolidated four-component system, composed of two crystalline materials and two disordered
materials was analyzed intact, using two different XRPD optics geometries. Calibrations constructed for
the prediction of individual constituent concentrations using the aforementioned three multi-variate

algorithms were statistically compared with traditional diffraction–absorption univariate calibration. PLS
regression modeling of data collected in transmission geometry provided the best statistical results for the
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. Introduction

X-ray powder diffraction (XRPD) of intact, consolidated sam-
les is an important technique for pharmaceutical materials and
rug product characterization. Quantitative XRPD methods are the
ost universal of the structure-sensitive methods for phase anal-

sis of multi-phase systems [1,2]. The foundation of quantitative
RPD techniques for analyzing mixtures was originally developed
y Alexander and Klug [3], and some examples applied to pharma-
eutical mixture analyses are reported in the literature [4–9].

Traditional quantitative XRPD methods can be subcategorized
nto those which incorporate a standard and those which are stan-
ardless. Standardless techniques, such as whole-pattern fitting
nd Rietveld refinement, are particularly useful because they per-

it quantification without the use of specific calibration standards.

hese methods have the ability to assess and account for physical
henomena (such as preferred orientation); however, selecting an
ppropriate function, is not trivial [10]. Standardless quantification
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ncentration. Further, this calibration was minimally affected by diffraction
corrected prior to phase quantification.

© 2008 Elsevier B.V. All rights reserved.

has also been limited to uses with crystalline materials. Further,
they require a known crystal structure, which is often obtained from
the literature/online databases.

Numerous quantitative XRPD methods exist to incorporate a
standard material into mixtures for analysis [11], the use of which
permits correction for matrix absorption. The most commonly
employed of these is the internal standard technique. Incorporation
of a standard within a sample, however, prevents analysis of intact,
marketable drug products, for which the inclusion of an analytical
dopant would be prohibited. Moreover, finding a standard that is
stable, has approximately the same absorption characteristics as the
sample, does not exhibit preferred orientation, and possesses iso-
lated peaks which do not overlap with sample peaks are all potential
barriers to use this method [11].

Diffraction–absorption calibrations are created through empiri-
cal linear regression modeling of component concentration against
single diffraction peak intensity, a few diffraction peak intensities,

or the integrated area under diffraction peak(s). These techniques
assume constant mass attenuation across the sample, and there-
fore, are susceptible to errors resulting from diffraction intensity
attenuation. Anisotropic intensity reduction due to microabsorp-
tion and extinction often result in non-linearities observed in

http://www.sciencedirect.com/science/journal/07317085
http://www.elsevier.com/locate/jpba
mailto:wildfongp@duq.edu
dx.doi.org/10.1016/j.jpba.2008.12.007
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uantitative XRPD calibrations [3,10]. The largest contributor to
ntensity attenuation, however, is preferred orientation, which can
e particularly problematic in consolidated samples [10]. Problems
ith preferred orientation in powdered samples are traditionally

esolved by optimizing the particle size used for XRPD analysis,
hich may add significantly to method development and execution

8], as well as the potential for induction of experimental artifact
wing to conversions elicited by triturative particle sizing [2].

By using only Bragg diffraction intensities, the traditional meth-
ds are limited to quantification of crystalline materials. Many solid
ral dosage forms are developed using excipient materials hav-
ng no long-range order. The physicochemical benefits afforded by
ncorporating amorphous active pharmaceutical ingredients in for-

ulations of solid oral dosage forms have resulted in increased
nterest in the use of these systems [12]; however, for XRPD to be
ufficiently sensitive to quantify disordered materials, a method
hat models both diffuse scatter and Bragg diffraction is required.

Many of the aforementioned issues are addressed through the
se of multi-variate calibrations [13]. In quantitative chemomet-
ics, a multi-variate relationship is sought between input data (e.g.,
iffraction patterns) and output data (e.g., composition, various
hysical phenomena). Applications of chemometric-based analy-
es in XRPD are starting to surface in the literature. Examples of
pplications of partial least squares (PLS) regression [14], princi-
al components analysis (PCA) [15,16], and advanced techniques
uch as artificial neural networks (ANN) [17,18] to XRPD data have
ll been reported. The possible benefits of incorporating entire
iffraction patterns into empirical models include enhanced signal-
o-noise, analyte sensitivity and selectivity [19]. The objective of
his work was to investigate applications of different multi-variate
alibrations used to quantify both crystalline and amorphous com-
onents in consolidated samples. Intact compact analysis using
RPD was used to determine which algorithm was most suitable for

ntact quantification of multi-phase consolidated pharmaceutical
ystems.

Quaternary mixtures composed of two crystalline materials and
wo disordered materials were compressed at multiple compaction
ressures and subjected to intact XRPD analysis using two different

nstrumental optics setups. Quantitative calibrations were created
sing the traditional (univariate) diffraction–absorption technique,
nd three multi-variate algorithms commonly employed in spec-
roscopy. Calibration linearity, precision, and prediction error were
alculated for assessing model suitability.

. Materials

Four-component mixtures comprised of anhydrous theo-
hylline (Lot No. 92577, Knoll AG, Ludwigshafen, Germany), Lactose
16 Fast Flo NF Monohydrate (Lot No. 8502113061, Hansen Labs,
ew Berlin, WI), microcrystalline cellulose (Avicel PH 200, Lot
o. M427C, FMC BioPolymer, Mechanicsburgh, PA), and soluble

tarch GR (Lot No. 39362, EMD Chemicals, Inc., Gibbstown, NJ)
ere prepared. The design matrix was fully balanced for compact

oncentration, having values ranging from 0 to 60% (w/w). Approx-
mately 800 mg of each mixture was compressed at 67.0 MPa,
17.3 MPa, 167.6 MPa, 217.8 MPa, and 268.1 MPa using a single sta-
ion Carver Press (Carver, Inc., Model 3887.1SDOA00, Wabash, IN)
quipped with a 13-mm flat-faced punch.

. Methods
.1. X-ray powder diffraction analysis of the four-component
ompacts

XRPD data were collected using an X’Pert Pro MPD sys-
em (PANalytical B.V., Alemlo, the Netherlands) equipped with a
d Biomedical Analysis 49 (2009) 619–626

copper anode (� = 1.5406 Å), programmable divergence slit, and
X’CeleratorTM detector. The operational voltage and amperage were
set to 45.0 kV and 40.0 mA, respectively, and diffraction patterns
were acquired using an angular step size of 0.02◦ 2� over a range
of 2–60◦ 2�. Data were collected with the instrument set in both
Bragg–Brentano reflectance geometry (equipped with a spinning
sample stage) and transmission geometry (equipped with a vertical
spinner sample stage with the sample sandwiched between X-ray
transparent kapton film), optically fitted with an auxiliary elliptical
mirror used to expose the sample to quasi-parallel beam radiation.

All chemometric routines were performed in the Matlab pro-
gramming environment (v7.1, MathWorks, Natick, MA) using the
PLS Toolbox (v3.0, Eigenvector Research, Manson, WA), together
with several analysis routines developed in-house.

3.2. Data preprocessing

Prior to the application of chemometric algorithms, sample
diffraction patterns were corrected for anisotropic peak (axis) shift
using an iterative program that tested for correlations between a
reference pattern and the sample pattern as a function of incremen-
tal calculated shifts. Corrected shifts that resulted in the highest
correlation were ultimately selected. Additionally, the diffraction
pattern of an empty sample holder (geometry dependent) was used
to correct for scatter from that sample holder by pattern subtrac-
tion. Sample absorption correction was also performed according
to published equations specific to the geometric setup of the instru-
ment [20], and finally, a modified version of the Rachinger method
[21] was used to mathematically correct for K�2 radiation.

3.3. Inverse least squares (ILS) regression

Inverse least squares regression assumes that component con-
centration is a function of diffraction intensity. The standard ILS
univariate model for a single component is calculated by:

y = xb + e (1)

where y is the reference concentration value, b is the regression
coefficient, x is the diffraction value at a specific peak position
(i.e., a single peak intensity, a calculated peak area, ratio of inten-
sities, etc.), and e is the error, which is assumed to be attributed
to the concentration values. One of the features of ILS regression
is that quantitative analysis can be performed even when the con-
centration of only a single component is known in the calibration
mixture. In multiple linear regression (MLR), several independent
variables are used, and the regression vector is calculated as follows
(in matrix notation):

B = X′ Y
X′ X

(2)

where Y is a matrix of concentration values, X is a matrix of inten-
sity values, B is an matrix of regression coefficients. MLR is limited,
in that the number of variables selected cannot exceed or equal the
number of samples in the calibration set. For example, a calibra-
tion set having nvars = nsamples only possesses enough statistically
independent information to estimate the mean; a larger sample
set provides additional degrees of freedom to estimate other sta-
tistical parameters. Although statistical methods are available to
assist with variable selection (i.e., stepwise regression), calibrations
created with suboptimal selections can introduce modeling errors
such as noise inflation from collinearity and over-fitting [22].
3.4. Classical least squares (CLS) regression

Classical least squares regression is often used in spectroscopic
quantitative modeling owing to its agreement with Beer’s law.
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disordered materials) against constituent concentration (nominal
value from the design). The PCR and PLS regression vectors for each
constituent were estimated individually from a component-specific
orthogonal basis set. Selection of the ideal number of principal
components/latent variables (shown in Table 2) was performed

Table 1
Sample composition design matrix.

Tablet (#) Theophylline
(wt/wt)

Lactose
(wt/wt)

MCC
(wt/wt)

Starch
(wt/wt)

1 0.600 0.200 0.200 0.000
2 0.400 0.400 0.200 0.000
3 0.200 0.600 0.200 0.000
4 0.400 0.200 0.400 0.000
5 0.200 0.400 0.400 0.000
6 0.200 0.200 0.600 0.000
7 0.600 0.200 0.000 0.200
8 0.400 0.400 0.000 0.200
9 0.200 0.600 0.000 0.200

10 0.600 0.000 0.200 0.200
11 0.400 0.200 0.200 0.200
12 0.200 0.400 0.200 0.200
13 0.000 0.600 0.200 0.200
14 0.400 0.000 0.401 0.200
15 0.200 0.200 0.400 0.200
16 0.000 0.400 0.400 0.200
17 0.200 0.000 0.600 0.200
18 0.000 0.200 0.600 0.200
19 0.400 0.200 0.000 0.400
20 0.200 0.400 0.000 0.400
21 0.400 0.000 0.200 0.400
22 0.200 0.200 0.200 0.399
23 0.000 0.400 0.200 0.400
24 0.200 0.000 0.400 0.400
M.D. Moore et al. / Journal of Pharmaceuti

nder some conditions, XRPD intensity will be a linear function
f the number of diffracting planes present, which qualifies the
pplication of CLS regression in XRPD data modeling. CLS assumes
linear combination of pure component sensitivities, where each

omponent is weighted by concentration. Unique to this technique
s the feature that the regression vectors can be used as estimates of
he pure component diffraction patterns. CLS regression models can
e generated using XRPD data provided all reference constituent
oncentrations are known (Eq. (3)):

= KY + Ec (3)

where X is a matrix of diffraction intensities, K is a matrix con-
aining the regression vectors (pure component estimates), Y is a

atrix of concentration values for all constituents, and Ec is the
rror matrix. Model error is attributed to diffracted intensities (i.e.,
icroabsorption, extinction, preferred orientation, etc.). The calcu-

ation of the regression vector (estimated pure components) is as
ollows:

= Y+•X (4)

here the superscript “+” indicates the Moore–Penrose pseudoin-
erse. The effectiveness of CLS regression in multi-variate modeling
s limited when the concentrations of all constituents contributing
o signal (in the case of XRPD, diffract or cause diffuse scatter) are
ot known, or when non-linearities are present [22].

.5. Principal components regression (PCR)

Principal components regression is the ILS regression of “scores”
alculated from principal components analysis against a dependent
ariable(s). The objective of PCA is to maximize the variation con-
ained in a data matrix with as few underlying “factors” as possible
23]. The PCA model has the form of

= T P′ + E (5)

here X is a data matrix of k sample-independent variables (diffrac-
ion intensities), for n samples, T is a matrix of component “scores”
n vector form for each component, P is a matrix of component
loadings,” and E is a matrix containing the residuals (the prime
ndicates the transpose of the matrix). Principal component scores
nd loadings are calculated using singular value decomposition
24]. The algorithm proceeds through a least squares fit of a straight
ine through the data in a k-dimensional hyperspace [25]. New
omponents are fitted to the data until an adequate amount of the
ariance has been explained. In PCR, the dependent variable(s) (i.e.,
eference concentration values) are linearly regressed against the
cores. The regression coefficients are calculated as follows:

= T′ Y
T′ T

•P (6)

here Y is a matrix of concentration values. A full-length regression
ector is obtained by projecting the regression coefficients onto the
oading vector(s). Calibrations may be created with fewer samples
han variables. Reviews of PCA and PCR can be found elsewhere in
he literature [22,25].

.6. Partial least squares regression

The PLS and PCR algorithms, being factor-based analysis meth-
ds, have similar goals. The objective of PLS is to maximize the
mount of co-variation explained between dependent variables and

ndependent variables using the fewest number of factors. Con-
rary to PCA where only the independent variables are used to
alculate the basis set, PLS incorporates both dependent and inde-
endent variables in the basis set calculation. It may be envisioned
hat this method is particularly powerful when the dependent
d Biomedical Analysis 49 (2009) 619–626 621

variable set contains low noise. Generally speaking, PLS explains
the total variance in fewer factors relative to PCR. In this study,
the SIMPLS algorithm was used to directly calculate factors as lin-
ear combinations of the original variables, while constrained to
orthogonality and normalization restrictions [26]. The PLS algo-
rithm used herein [27], and representative reviews can be found
elsewhere [22,25].

4. Results

The fully balanced concentration design matrix used for this
study is shown in Table 1 and contains five concentration points
(0, 20, 25, 40, 60%, w/w) for each of the four constituents. The
concentration points were added to the design matrix in a one-
by-one fashion, followed by a calculation of the matrix covariance;
each point was adjusted to minimize this covariance. It should
be noted that separate experimentation concerning instrument
sensitivity, selectivity, and signal-to-noise has been previously
reported in Moore et al., [19]. At each concentration point, mixtures
were compacted using five different pressures (67.0 MPa, 117.3 MPa,
167.6 MPa, 217.8 MPa, and 268.1 MPa), resulting in a calibration
sample size of 145 compacts. Recognizing that consolidation may
induce changes to diffraction intensity [9,28] and diffuse scatter,
samples compacted at different pressures were included in the
calibration set to incorporate pattern variability into the model
approximation. An additional sample at each concentration point,
compacted using a randomly assigned pressure, was used to test
the calibrations.

Univariate calibrations were created by regressing a single inten-
sity value for each individual component (i.e., the largest Bragg peak
for crystalline materials and the largest overall intensity for the
25 0.000 0.200 0.400 0.400
26 0.200 0.200 0.000 0.600
27 0.200 0.000 0.200 0.600
28 0.000 0.200 0.200 0.600
29 0.250 0.250 0.250 0.250
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Table 2
Selected statistical values for the different quantitative PXRD calibrations relative to the collection geometry.

Method Component LV Transmission Reflectance

R2 SEP (%) Precision (%) R2 SEP (%) Precision (%)

Univariate Theophylline N/A 0.961 3.79 0.00024 0.898 5.09 0.09491
Lactose 0.927 5.70 0.00081 0.911 4.95 0.03195
MCC 0.809 9.70 0.00324 0.940 5.81 0.04044
Starch 0.292 15.30 0.00935 0.006 18.18 0.07608

CLS Theophylline N/A 0.972 2.90 0.00027 0.942 3.57 0.16771
Lactose 0.963 3.48 0.00076 0.939 3.63 0.12726
MCC 0.955 3.69 0.00237 0.958 5.47 0.07263
Starch 0.946 5.24 0.00413 0.866 4.91 0.01797

PCR Theophylline 1 0.972 2.92 0.00027 0.926 4.81 0.07780
Lactose 3 0.968 3.16 0.00062 0.919 4.82 0.02580
MCC 4 0.751 9.77 0.00346 0.875 7.49 0.03176
Starch 5 0.941 4.98 0.00133 0.868 5.00 0.10102
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of modeling the decrease in concentration of other components. In
Fig. 3, the calculated regression vectors for the three multi-variate
LS Theophylline 1 0.972 2.91
Lactose 3 0.978 2.48
MCC 3 0.955 3.84
Starch 3 0.950 4.88

hrough minimization of both the root mean square error of cali-
ration (RMSEC) and the root mean square error of cross validation
RMSECV).

Traditionally, it is not common to use a univariate XRPD cal-
bration to predict the concentration of a disordered component
n a mixture; however, it was performed in this study as a means
o illustrate the practicality of different multi-variate methods. In
eneral, data collected in transmission geometry provided better
inearity, precision and lower concentration prediction error rela-
ive to reflectance geometry for both the crystalline and disordered
omponents. In transmission geometry, the entire sample volume
s irradiated, whereas only a fraction of the sample is interrogated in
eflectance analysis. Therefore, data collected in transmission mode
s less susceptible to errors derived from analyzing inhomogeneous
regions” within a sample matrix.

The data in Table 2 indicate that the standard error of predic-
ion (SEP) for theophylline in most instances is greater when using
ata collected in reflectance geometry relative to that in transmis-
ion. This indicates a correlation between instrument geometry and
rediction error; more than likely a result of the diffraction pattern
nomalies related to specific analytical optics setup modes. Barring

icroabsorption, extinction, and other anomalies, regression vec-

ors should mimic pure component diffraction patterns. In Fig. 1, the
ure component pattern and the calculated regression vectors for
ll three multi-variate theophylline prediction models are shown

ig. 1. Calculated regression vectors for each multi-variate calibration used in the
rediction of anhydrous theophylline from data collected in reflectance geometry.
0.00028 0.933 4.49 0.08007
0.00110 0.943 3.71 0.02915
0.00210 0.937 6.23 0.03226
0.00256 0.804 7.15 0.07829

for data collected in reflectance geometry. There is good agreement
between all regression vectors and the pure component pattern,
as would be expected. For PCR and PLS, negative correlations are
observed at ∼18◦ 2�, which specifically corresponds with the loca-
tion of Bragg peaks resulting from lactose monohydrate diffraction.
Therefore, the PCR and PLS models are sensitive to the changes in
both theophylline and lactose concentration at this angle. In Fig. 2,
the theophylline regression vectors calculated from data collected
using transmission geometry are identical to the pure compo-
nent scan. Further, the negative correlations observed at ∼18◦ 2�
in the reflectance geometry regression vectors are nearly absent
from transmission data. The calculated regression vectors from the
transmission geometry are, therefore, more highly correlated to
only changes in theophylline concentration, thereby resulting in
enhanced theophylline sensitivity and decreased prediction errors.

When considering disordered materials, the diffuse scatter that
produces the characteristic “amorphous halo” may not be linearly
related to constituent concentration. Non-linear relationships may
manifest as negative correlations in regression vectors as a result
starch prediction models and the corresponding pure component
scan are shown for data collected in reflectance geometry. The
CLS regression vector bears the highest correlation with the pure

Fig. 2. Calculated regression vectors for each multi-variate calibration used in the
prediction of anhydrous theophylline from data collected in transmission geometry.
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ig. 3. Calculated regression vectors for each multi-variate calibration used in the
rediction of starch from data collected in reflectance geometry.

omponent diffraction pattern, thereby affording enhanced linear-
ty and decreased prediction error relative to PCR and PLS (from
able 2). Although they possess the same positive correlations as
he starch pure component scan, the regression vectors from both
CR and PLS once again exhibit negative correlations attributable
o changes in the concentrations of other mixture components at
ngles corresponding to their respective peaks of principal diffrac-
ion: theophylline (∼12◦ 2�), lactose (∼18◦ 2�) and MCC (∼22◦ 2�).
his same trend is also observed for the transmission data, as shown
n Fig. 4, where both the PLS and PCR regression vectors exhibit the
ame negative correlations seen in reflectance. Additionally, the CLS
egression vector of transmission data representing diffraction by
he starch component possesses negative correlations at ∼12◦ 2�
nd ∼18◦ 2�. These regression vector similarities resulted in near-
qual linearity and prediction error for the PCR, PLS, and CLS starch
alibrations created from data collected in transmission. The nega-
ive correlations observed in the disordered component regression
ectors, therefore, could quite possibly be a result of the non-linear

elationship between constituent concentration and diffuse scatter
ntensity.

In Table 3, linearity and SEP are reported as a function of applied
attern corrections using data collected in reflectance geometry.

able 3
he effects of various powder pattern corrections on linearity and the standard error of pr
isordered components using data collected by reflectance geometry.

No corrections Axis shift K�2 subtraction

2

Univariate
Crystalline 0.723 0.898 0.759
Disordered 0.493 0.489 0.484

PLS
Crystalline 0.906 0.936 0.906
Disordered 0.864 0.890 0.866

EP (%)
Univariate

Crystalline 7.61 5.59 6.75
Disordered 11.41 11.19 11.54

PLS
Crystalline 4.39 4.45 4.40
Disordered 5.97 6.40 5.98
Fig. 4. Calculated regression vectors for each multi-variate calibration used in the
prediction of starch from data collected in transmission geometry.

Statistics are reported as an average of the two crystalline com-
ponents and an average of the two disordered components. The
importance of correcting for axis shift prior to creating a uni-
variate calibration in the prediction of crystalline components
is supported by the observed increased linearity and decreased
prediction error. When modeling a single intensity, or the area
of a single peak, anisotropic peak distortions may build errors
into the calibration and result in inaccurate predictions. Interest-
ingly, in multi-variate calibrations (such as PLS) the linearity and
predictability are not significantly affected by corrections to the
powder patterns relative to univariate modeling. By modeling mul-
tiple intensities having correlation with constituent concentration,
the anisotropy of error-related variance is compensated for through
increased correlation at unaffected variables. Further, through max-
imization of the explained covariance between diffraction intensity
and constituent concentration, variability due to anisotropic peak
aberrations is modeled in the regression vectors.

Table 4 shows the effects of XRPD pattern corrections on
linearity and prediction error using data collected in transmis-
sion geometry. Comparison with Table 3 (reflectance geometry

collection) indicates that performance statistics are superior for
transmission data, particularly for disordered (weakly diffracting)
materials. This is not unexpected, given that transmission exper-
iments interrogate the entire compact sample volume. Although

ediction of the univariate and PLS calibrations for prediction of both crystalline and

Absorption correction Background subtraction All

0.729 0.723 0.904
0.486 0.493 0.473

0.908 0.906 0.938
0.849 0.864 0.871

7.34 7.61 5.02
11.76 11.41 11.99

4.11 4.39 4.10
6.42 5.97 6.69
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Table 4
The effects of various powder pattern corrections on linearity and the standard error of prediction of the univariate and PLS calibrations for prediction of both crystalline and
disordered components using data collected by transmission geometry.

No corrections Axis shift K�2 subtraction Absorption correction Background subtraction All

R2

Univariate
Crystalline 0.940 0.947 0.937 0.939 0.941 0.944
Disordered 0.260 0.590 0.260 0.186 0.260 0.551

PLS
Crystalline 0.968 0.972 0.968 0.971 0.968 0.975
Disordered 0.770 0.948 0.772 0.771 0.770 0.952

SEP (%)
Univariate

Crystalline 4.24 4.10 4.42 4.47 4.15 4.75
Disordered 16.30 10.72 16.30 16.49 16.30 12.50

2.96 3.07 2.70
8.17 8.07 4.36
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PLS
Crystalline 3.07 2.89 3.07
Disordered 8.07 4.17 8.10

he low mass attenuation coefficients of pharmaceutical materials
ermit some sample penetration (on the order of mm), reflectance
xperiments interrogate a much smaller volume compared to trans-
ission experiments. For the crystalline components, both models

re invariant to all of the applied corrections. However, the SEP
or the disordered components using PLS shows significant depen-
ence on axis shift correction. Fig. 5 illustrates the effects of
pplied pattern corrections on the calculated PLS regression vec-
ors. The calculated regression vectors of raw diffraction patterns,
atterns corrected for absorption only, patterns corrected for K�2
nly, or background subtraction only are highly correlated to one
nother. Further, these regression vectors exhibit differences from
he regression vector calculated from patterns corrected for axis
hift. The dashed boxes highlight the main differences observed
etween the aforementioned group of regression vectors and those
or which axis shift was corrected. These differences represent
ncertainties correlated to peak aberrations and result in modeling
oncentration changes of other components. Ultimately, the predic-
ion error was larger due to the error in modeling the concentration
hanges in multiple components.

For many spectroscopic methods, building quantitative models

hat include variability associated with compression force is imper-
tive. However, the variability in diffraction intensity observed to
ave resulted from consolidation was minimal because the mate-
ials used in this study have low mass-attenuation coefficients and
equire few applied absorption corrections. Admittedly, creating a

Fig. 6. The effects of the number of samples in the calibration set on
Fig. 5. The effects of various corrections on the PLS calibration regression vectors as
applied to data collected in transmission geometry.

calibration and test sample matrix the size of the set presented in

this work (n = 174) may be impractical in a multi-product industrial
development group. Given the results of the present data, however,
efficient calibrations could have been created using fewer sam-
ples. This was tested by compressing a single sample from each

the standard error of prediction for both collection geometries.
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ig. 7. The effects of the number of samples in the calibration set on the starch and
heophylline CLS regression vectors for data collected from reflectance geometry.

oncentration point (Table 1) at 268.1 MPa in order to re-create
he calibrations (29 samples total), while the remaining samples
n = 145) were used to test the models generated from this reduced
ata set. The graph in Fig. 6 shows prediction error as a function of
omponent, as modeled by each calibration method for differently
ized calibration sets relative to the experimental optics utilized.
inearity statistics (not shown) were not affected by the reduction
f the dataset used for calibration. The data in Fig. 6 illustrate that
rediction error associated with transmission geometry is relatively
naffected by the size of the calibration set employed. Reflectance
eometry, however, indicates that a slight increase in prediction
rror occurs when using the smaller calibration set, possibly due to
he decreased signal-to-noise.

The starch and theophylline calculated CLS regression vectors for
eflectance and transmission geometry are shown in Figs. 7 and 8,
espectively. When comparing the starch regression vectors as cal-
ulated from data collected in reflectance geometry, the smaller
alibration set vector exhibits increased noise (rougher) and
arger peak/trough correlations ultimately attributable to increased
ncertainty. Though the starch regression vector (as calculated from

ata collected in transmission geometry) for the smaller calibra-
ion set is “rougher” relative to the vector from the larger set, the
verall shape is the same for both. The regression vectors calculated
rom the smaller calibration set using data collected in transmission

ig. 8. The effects of the number of samples in the calibration set on the starch and
heophylline CLS regression vectors for data collected from transmission geometry.
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mode demonstrated increased correlation to the regression vectors
calculated from the larger calibration set relative to the reflectance
data. Therefore, this enhanced correlation results in nearly identi-
cal error statistics independent of calibration sample size (seen in
Fig. 6).

Based on the results presented herein, calibrations via PLS, cre-
ated from the data collected in transmission geometry can be
recommended as optimal for quantitative XRPD of similar systems.
The calibrations created using this algorithm exhibited optimal lin-
earity values of 0.972, 0.978, 0.955, and 0.950 for theophylline,
lactose, MCC, and starch, respectively. The calibrations created in
the present work stem from a quaternary design using the design
matrix concentration values. Given that each nominal design value
is likely to differ slightly from the actual concentration, each compo-
nent reference concentration value has some random error. Overall,
a cumulative 2–3% error in content uniformity of all the con-
stituents may be anticipated; linearity values approaching 0.98
in this design are, therefore, statistically acceptable. Additionally,
minimum prediction error and enhanced precision for both crys-
talline and disordered components in complex, intact compacts was
achieved. Furthermore, PLS models were observed to be less sus-
ceptible to errors associated with diffraction pattern anomalies and
effects related to the size of the calibration set.

5. Conclusions

The ability to analyze intact compacts makes XRPD an important
analytical tool for non-destructive pharmaceutical characteriza-
tion. The structure-sensitivity afforded by XRPD enables quan-
titative applications having the ability to discriminate between
different chemical components, polymorphs, and other phase mix-
tures. It has been shown in this work that the traditional univariate
calibrations are affected by peak distortion, variable selection,
and applied powder pattern corrections. Multi-variate calibrations,
however, provided enhanced linearity, decreased prediction errors,
and exhibited less susceptibility to errors attributable to peak
distortions relative to single-point calibrations. Further, calibra-
tion errors related to pattern anomalies were minimized through
empirical modeling of the entire diffraction pattern (i.e., both
Bragg diffraction and diffuse scatter intensities). As an increased
amount of mixed amorphous/crystalline systems are formulated
into dosage forms, the need for discriminative and sensitive quan-
titative analytical tools for intact analysis will become more
prevalent.

References

[1] B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, third ed., Prentice Hall,
Upper Saddle River, 2001.

[2] R.L.S. Ron Jenkins, in: J.D. Winefordner (Ed.), Chemical Analysis, vol. 138, Wiley-
Interscience, New York, 1996.

[3] L. Alexander, H.P. Klug, Anal. Chem. 20 (1948) 886–889.
[4] A.K. Dash, K. Khin-Khin, R. Suryanarayanan, J. Pharm. Sci. 91 (2002) 983–990.
[5] I. Fix, K.J. Steffens, Drug Dev. Ind. Pharm. 30 (2004) 513–523.
[6] R. Suryanarayanan, C.S. Herman, Pharm. Res. 8 (1991) 393–399.
[7] R. Suryanarayanan, C.S. Herman, Int. J. Pharm. 77 (1991) 287–295.
[8] M. Tiwari, G. Chawla, A.K. Bansal, J. Pharm. Biomed. Anal. 43 (2007) 865–872.
[9] P.L.D. Wildfong, et al., J. Pharm. Biomed. Anal. 39 (2005) 1–7.
10] S. Yamamura, Y. Momose, Int. J. Pharm. 212 (2001) 203–212.

[11] L.S. Zevin, G. Kimmel, in: I. Mureinik (Ed.), Quantitative X-ray Diffractometry,
Springer, New York, 1995.

12] B.C. Hancock, G. Zografi, J. Pharm. Sci. 86 (1997) 1–12.
13] H. Martens, T. Næs, Multivariate Calibration, John Wiley and Sons, New York,

NY, USA, 1989.
14] M. Suda, K. Takayama, M. Otsuka, Anal. Sci. 24 (2008) 451–457.

15] A.C. Jorgensen, et al., J. Pharm. Sci. 95 (2006) 906–916.
16] P.R. Nassab, R. Rajko, P. Szabo-Revesz, J. Pharm. Biomed. Anal. 41 (2006)

1191–1197.
[17] S. Agatonovic-Kustrin, et al., J. Pharm. Biomed. Anal. (2000) 985–992.
18] T. Okumura, et al., Colloids Surf. B. Biointerfaces 49 (2006) 153–157.
19] M.D. Moore, et al., J. Pharm. Biomed. Anal. 47 (2008) 238–247.



6 cal an

[

[
[
[

26 M.D. Moore et al. / Journal of Pharmaceuti
20] T. Egami, S.J.L. Billinge (Eds.), Pergamon Materials Series, vol. 7, Pergamon, Else-
vier, Oxford, 2003.

21] R. Delhez, E.J. Mittemeijer, J. Appl. Crystallogr. 8 (1975) 609–611.
22] D.M. Haaland, E.V. Thomas, Anal. Chem. 60 (1988) 1193–1202.
23] H. Hotelling, J. Educ. Psychol. 24 (1933), pp. 417–441, 498–520.

[
[
[
[
[

d Biomedical Analysis 49 (2009) 619–626
24] E. Anderson, et al., LAPACK User’s Guide, 1999.
25] J. Gabrielsson, N.-O. Lindberg, T. Lundstedt, J. Chemometr. 16 (2002) 141–160.
26] I.S. Helland, Chemometr. Intell. Lab. Syst. 58 (2001) 97–107.
27] S. de Jong, Chemometr. Intell. Lab. Syst. 18 (1993) 251–263.
28] W. Cao, et al., J. Pharm. Biomed. Anal. 30 (2002) 1111–1119.


	Evaluation of chemometric algorithms in quantitative X-ray powder diffraction (XRPD) of intact multi-component consolidated samples
	Introduction
	Materials
	Methods
	X-ray powder diffraction analysis of the four-component compacts
	Data preprocessing
	Inverse least squares (ILS) regression
	Classical least squares (CLS) regression
	Principal components regression (PCR)
	Partial least squares regression

	Results
	Conclusions
	References


